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Introduction 

Future-looking high end computing initiatives will deploy powerful, large-scale computing plat-
forms that leverage novel component technologies for superior node performance in advanced 
system architectures with tens or even hundreds of thousands of nodes.  Recent advances in per-
formance tools and modeling methodologies suggest that it is feasible to acquire such systems 
intelligently and achieve excellent performance, while also significantly reducing the user time 
required to attain high performance.  These developments are relevant to several aspects of fu-
ture HEC technology outlined in the recent HECRTF white paper request, in particular items 5.4, 
5.5, 5.6, and 5.8.  We envision the following specific capabilities: 

1. Performance modeling tools, available to researchers and vendors, will extrapolate perform-
ance from prototype systems to full-scale systems, and even accurately predict performance be-
havior before systems are manufactured, thus enabling both improved designs and more intelli-
gent selection of systems in procurements. 
2. System simulation facilities, implemented on highly parallel platforms and available to re-
searchers and vendors, will for instance realistically model the performance of a specific inter-
processor network design running a specific scientific application code.  As with item 1, these 
facilities can lead both to improved designs and procurement decisions that yield significantly 
greater sustained performance for targeted scientific applications. 
3. A program monitoring and analysis infrastructure, scalable to 100,000 processors and beyond, 
will provide performance information at every level of system’s memory hierarchy and network. 
This infrastructure will build upon knowledge discovery and data mining techniques to be sig-
nificantly more scalable and easier to use than the current infrastructure, and a standard version 
will be incorporated in most high-end systems. 
4. Self-tuning software facilities, now available only for a few specialized libraries and requiring 
separate test runs, will be integrated into a broad range of scientific application codes.  Eventu-
ally these facilities will make use of the performance monitoring infrastructure mentioned above, 
and will extend to dynamic optimization at the subroutine level. 

Each of these capabilities appears to be feasible, based on successes in current research projects. 
However, while the prototypes of many of these facilities are already in hand, significant addi-
tional research and development will be required to realize the full potential described above.  In 
the following, we sketch some of this required research. 

Performance Monitoring Infrastructure 
Informal approaches to parallel performance monitoring and analysis may be acceptable at the 
present time, but such approaches will be woefully inadequate once systems are fielded with 
multiple levels of parallelism throughout the system’s compute nodes, network, and memory hi-
erarchy, and including tens or hundreds of thousands of compute nodes.  It is also unlikely that 
we can effectively model and utilize novel architecture systems without the aid of an advanced 
monitoring infrastructure. 

Advanced hardware performance monitoring facilities will be required to obtain performance 
data without significant perturbation.  A key challenge beyond counting of events throughout the 
system is in gathering and interpreting the exploding quantity of data.  Even now, collecting 
memory access pattern information, which is often crucial for understanding performance on 
deep-memory-hierarchy machines, implies a three orders-of-magnitude slowdown [17].  Yet 
many applications of interest run for hours or days, during which their performance behavior 



changes frequently.  Systems with tens or hundreds of thousands of processors will greatly com-
pound this performance data analysis problem.  Several alternatives are being explored, ranging 
from clever statistical sampling schemes to on-the-fly analysis of performance data that would 
reduce the amount of data involved.  Meaningful analysis of this data will require advanced 
techniques such as multivariate statistical methods [1], knowledge discovery tools [19], time se-
ries analysis [21] and advanced visualization schemes [2] to distill important facts from these 
potentially massive data sets.  This analysis can then be used to select the key features used in 
monitoring performance and to build predictive models of the performance of a single processor 
as well as the entire parallel system. 

A unique opportunity exists for performance researchers to work with vendors to improve the 
selection of hardware performance data.  Ideally, design of performance monitoring hardware 
should be driven by data input needs for application performance modeling and analysis, rather 
than modeling and analysis capabilities being limited by the available data.  For example, one 
key item that current hardware monitors lack is information regarding memory addresses, such 
as data on gaps or patterns between successive addresses.  This information would provide valu-
able insights into the memory behavior of a user program.  Along this line, we observe that the 
counters currently available have been designed primarily to address the needs of vendor bench-
mark personnel.  Hopefully in the future vendors will consider counters useful to application de-
velopers and performance tuners as well, for example by implementing the PAPI proposed stan-
dard metrics [3]. 

Another area where the performance research and vendor design communities could work to-
gether is to extend inter-processor network hardware performance monitoring facilities to appli-
cation performance analysis.  Although network hardware often includes some performance 
monitoring facilities, the lack of support to associate performance data with a specific application 
code significantly hinders applying the data to application performance evaluation.  The use of 
reconfigurable technology (such as FPGAs) might be of use to support performance-monitoring 
applications, for both hardware engineers and end users.  Determining what events are most im-
portant to monitor, designing systems to support low-overhead monitoring that generates infor-
mation useful to application developers, and designing software to utilize this information, are 
important topics of future research. 

Any improvements that are made in the capabilities of performance tools must be matched by a 
corresponding improvement in ease of use, or otherwise they will have only limited impact in the 
overall goals of reducing time to solution and simplifying system acquisitions.  In this regard, it 
is instructive to observe that while many professionals in the HEC field have produced web con-
tent, very few have taken formal training in HTML.  Instead, most have merely copied and 
adapted a colleague’s HTML or used higher-level tools. In a similar vein, we envision a set of 
standard templates for performance analysis that automatically engage a typical performance 
analysis scenario, using advanced tools.  Monitoring should be as automatic as possible.  For ex-
ample, users should be able to specify data of interest at a higher level and in a standard manner 
across systems, without having to install the monitoring software themselves or write low-level 
library calls.  High-levels tools could significantly increase the user base of performance facili-
ties.  These facilities would also apply existing tools for knowledge discovery to performance 
data.  The application of techniques such as decision trees to performance data has been initially 
explored [19, 14], but clearly significant additional research in this area is needed. 



Performance Modeling 

Item 5.8 in the current call emphasizes the need to develop improved methodologies for procur-
ing high-end computer systems.  As systems become ten times or more larger in memory and 
computing power than those in operation at the time of the acquisition, both the challenge of 
making informed procurement choices, and the penalty for mistakes, will be correspondingly 
greater.  Novel architectures, distinct in design and technology from any existing systems (such 
as those being explored in DARPA’s HPCS program), will compound this challenge. 

The emerging technology of performance modeling holds the key to meeting these challenges. 
For example, accurate performance models for several full applications from the ASCI workload 
[8, 11, 12] are routinely utilized for system design, optimization and maintenance.  Moreover, a 
similar model has been used in the procurement process for the ASCI Purple system, predicting 
the performance of the code SAGE on several the systems in a recent competition [9].  Alterna-
tive modeling strategies have been used to model the NAS Parallel Benchmarks, several small 
PETSc applications, and the applications POP (Parallel Ocean Program), NLOM (Navy Layered 
Ocean Model), and Cobal60, across multiple compute platforms (IBM Power 3 and Power 4 sys-
tems, a Compaq Alpha server, and a Cray T3E-600) [4, 17].  These models are extremely accu-
rate across a range of processors (from 2 to 128), with errors ranging from 1% to 16%. 

These results suggest that it is possible to accurately predict the performance achieved by a fu-
ture system (much larger in size and employing a distinct design from hardware currently in op-
eration) [13], running a future scientific application (much larger in problem size than currently 
being run).  We can even envision that a future call for proposals for a system procurement will 
specify that the vendor run some small loops or other simple test code on the vendor’s system 
simulator (or even on prototype hardware) and report the results, thus providing the required in-
put data for performance models of key applications.  Decision makers would have at their dis-
posal not only performance information but also the capability to pursue “what if” scenarios. 
Other uses include improved system configuration and system maintenance [4, 8, 9, 11, 17]. 

Executable analytical performance evaluation also shows promise [11].  These techniques can 
evaluate early stage architecture designs over a wide operating range, and are thus helpful in 
identifying advantageous architectural features, before instruction set architectures and other fea-
tures are firmly established, and before system software (runtime systems or compilers) is avail-
able.  The methodology here is to model program execution through a program graph that mod-
els thread-level parallelism in the application.  The program graph is executed on the architecture 
model, while the resulting analytical model is solved using a queuing network tool enriched with 
synchronization.  This approach has been applied to evaluate the impact of “percolation,” which 
was first proposed for HTMT, and is now being studied under DARPA HPCS funding. 

Performance models can even be used within a user code to control the execution dynamically 
for best performance.  Along this line, some researchers are considering using simple perform-
ance models to improve load balancing in unstructured grid applications.  All of this underscores 
the need for a variety of performance modeling methodologies, ranging from simple, curve-
fitting approaches to sophisticated tools that perform a thorough inventory of all operations per-
formed by the target application program on a particular system.  However, much work is re-
quired to further automate and reduce the complexity, “craftiness” and cost of the modeling 
work.  In addition, more work is needed define a better interface between “traditional tools” 
(such as profilers, timers and hardware performance monitors) and modeling tools. 



System Simulation 

System simulation is another mechanism that could provide greater understanding of perform-
ance phenomena.  At the recent High-Speed Computing Conference in Oregon, one speaker 
noted that although computational scientists have become highly skilled in simulating physical 
phenomenon, as yet they have not exploited this technology to understand the performance be-
havior of their applications.  This indicates a “last mile” disconnect: a few system simulators are 
available in the research community [16], and vendors often develop cycle-accurate or near-
cycle-accurate simulators as part of their product development, but computational scientists 
nonetheless rarely use such tools to understand or predict the performance of their applications. 

Several challenges must be overcome for these simulators to be useful to application perform-
ance understanding.  Perhaps most importantly, simulator execution times required to analyze 
performance for even a small loop are very large; the analysis of a full-length application code 
has been out of the question.  Another common weakness of these simulators is that they typi-
cally target only single processor systems, or at best shared memory multiprocessor systems. 

But with the emergence of highly parallel computing platforms, we can consider highly detailed 
parallel simulations of scalable systems.  Low-level processor-memory behavior can be mostly 
decoupled from the analysis of inter-processor network phenomena.  Then, once the communica-
tion behavior of an application has been profiled, one can simulate its inter-processor network 
behavior by generating a sequence of communication operations on each node, mimicking the 
statistics of frequency and message length typical of the program’s phases. 

Ideally, we envision an open-source architectural simulation framework and API that enables 
plug-and-play between separately-developed simulators for different architectural features (e.g., 
PIM, polymorphic multithreaded processor, and network), and would also enable zoom-out and 
zoom-in between statistically-based and cycle-accurate simulation techniques.  This framework 
will, however, require significant advances in simulation methodologies in order to support con-
current use of modules running at different time-scales and based on different simulation tech-
niques.  For example, current architectural simulation engines tend to be time-stepped; but realis-
tic models of scalable hardware and software are much too dynamic, asynchronous, and tempo-
rally sparse for that kind of synchronization.  Instead, we anticipate that the simulations will be 
decomposed into logical processes, and will be synchronized by either conservative or optimistic 
methods (or both), as developed in the parallel discrete event simulation (PDES) community [7, 
10].  With that approach, the high degree of real parallelism these systems exhibit will tend to 
translate to a similarly high degree of computational parallelism in the simulation as well. 

Libraries, Compilers and Self-Tuning Software 
It is not sufficient to merely study the performance of large future systems – facilities for auto-
matic and/or semi-automatic performance tuning must also be improved.  One approach here is 
to expand the scope of optimized scientific libraries for high performance computing.  Three ca-
nonical examples are the ScaLAPACK, PETSc, and the NWChem libraries.  Some related efforts 
include the emergence of the Community Climate Code (CCM) in the climate modeling commu-
nity and similar efforts to unify fusion and accelerator modeling computations. 

One of the more promising developments in this arena is the recent emergence of “self-tuning” 
library software.  Examples include the FFTW library [6] and versions of ATLAS, ScaLAPACK, 
and LFC library routines [5].  The approach is to run, in an initialization step, a program that 



tests a number of different computational strategies (such as different parameters for array pad-
ding or cache blocking).  The tuning program then selects the option that demonstrates the best 
performance in the test run for future production runs.  This general approach can be extended to 
almost any large-scale software library.  However, the process of devising tests, determining op-
timal parameters and using the resulting parameters in the production code must be simplified if 
this general scheme is to be implemented widely.  One possibility here is to combine rapid, on-
the-fly performance modeling with such self-adaptive, self-tuning codes to narrow the parameter 
space for trying different computational strategies. 

Eventually these self-tuning facilities can be incorporated directly into conventional user code.  
In other words, we foresee the time when self-tuning facilities will be understood well enough 
that they can be inserted by a preprocessor (and eventually perhaps by a compiler) directly into a 
user code at the start of the main program, or even at the subroutine level.  Parallel processing 
can be utilized in a novel way here.  The first iteration can be performed using different low-
level data layout options on each processor.  Then after the first iteration, the program uses the 
best performing choice on all nodes.  This may seem futuristic, but in reality the basic facilities 
have already been demonstrated in current research (mostly in the PERC project), including self-
tuning library software, performance assertions, compiler enhancements and semiautomatic code 
modifications [15].  In addition, the Active Harmony system (another PERC activity) has dem-
onstrated the ability to automatically improve the performance of some large scientific applica-
tion programs, including the POP ocean model code [18]. 

In this regard, it is instructive to recall the history of vector computing.  Initially, compilers of-
fered little or no assistance – it was necessary for programmers to explicitly vectorize loops.  
Then semi-automatic vectorizing compilers became available, which eventually were quite suc-
cessful.  The final step was run-time vectorization, with compilers generating both scalar and 
vector code, and then deciding at run time if the vector code is safe.  We see a similar long-term 
potential for self-tuning code that makes use of performance monitoring.  Other ideas for com-
piler technology that show promise include dynamic compilation and compile-time searching for 
optimal run-time alternatives, including array blocking, loop fusion and fission, flexible data 
layout and array padding.  Since these changes in several cases go beyond the limits of what is 
permissible according to existing language standard definitions, this points to the need to work 
with language standard committees in tandem with this research. 

Conclusion 
Designing, deploying and programming the next generation of high-end computing platforms, 
which will feature tens or hundreds of thousands of processors, with new designs such as proces-
sor-in-memory or multi-threaded architectures, requires advanced tools (both hardware and 
software) to monitor, model and control performance. We believe that such facilities can be de-
veloped, although there are many questions that remain to be answered. 
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